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Abstract—The paper presents a comparative analysis of the numerical solution of the problem of
source identification in the diffusion-logistics model from the data on the diffusion process at fixed
points in time and space by gradient methods in continuous and discrete formulations. Expressions are
obtained for calculating the gradient of the objective functional for two formulations related to the
solution of the corresponding adjoint problems. It is shown that, if the discrete functions of the model
are approximated by cubic splines, the accuracy of the solutions of the source identification problem
has the same order in the case of continuous and discrete calculation of the gradient. Numerical exper-
iments in solving the source identification problem for a discrete model of information dissemination
in online social networks have shown that the use of the discrete approach significantly increases the
computational time in comparison with the continuous approach.
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INTRODUCTION
Gradient methods for solving source identification problems for differential equations were used in [1–7].

Their main idea is to successively decrease the value of the objective functional  in the
form

(1)

where  is the descent parameter, which characterizes one or another gradient method,  is the gra-

dient of the objective functional , and  is the operator of the inverse problem.
Depending on the type of space  (Hilbert, Sobolev, Euclidean, etc.), the domains of the functional

 and its gradient  can be integrable, continuously differentiable, or discrete. In this regard, it is
possible to use two approaches: 1) continuous, which consists in formulating the functions used in con-
tinuous spaces with subsequent representation of the problem in a finite-difference form, and 2) discrete,
in which one first passes to a finite-difference analog, for which discrete functions  and  are for-
mulated (see [8]).

In this paper, for the source identification problem for the diffusion-logistics model, which arises when
describing information dissemination in online social networks and formulated in continuous and discrete
forms, both approaches are used. The areas of their applicability are revealed. The gradients of objective
functionals are obtained in continuous and discrete formulations related to the solutions of the corre-
sponding adjoint problems. Note that the discrete version of the gradient is not a consequence of discret-
ization of its continuous counterpart, but is obtained by minimizing the Lagrange function (see [9–12]).

The article is organized as follows. The formulations of the direct and inverse problems are given in
Section 1. The gradient of the objective functional in discrete form is derived in Section 2.1. The expres-
sion for the gradient of the objective functional in continuous form and the corresponding formulation of
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the adjoint problem are given in Section 2.2. Algorithms of gradient methods for different descent param-
eters, as well as a comparative analysis of the results of numerical calculations for solving the source iden-
tification problem for the diffusion-logistics model, are given in Section 3.

1. FORMULATIONS OF THE DIRECT AND INVERSE PROBLEMS

1.1. Formulation of the Direct Problem

In this work, the direct problem is understood as the problem of simulating the process of information
dissemination in online social networks, in which it is required to find the density function of active users,

, at each point in space and time. The distance  is an integer quantity that describes the minimum
number of friendships between the user and the source of information and is measured in units. Time  is
measured in hours, and the density of active users  is measured in the number of people per unit
distance.

The data presented in [13] illustrate that interest in information is manifested by users with a distance
 ranging from 1 to 6. It is within these boundaries that a significant contribution to the change in the den-

sity of active users  occurs. Also, the theory of six handshakes is valid for social networks, according
to which most agents are located at a distance of x ≤ 6. Therefore, the model considers Neumann bound-
ary conditions, which describe the absence of information flow across the boundaries at x = 1, 6.

 The problem of simulating the information dissemination process is based on the law of conservation
of information flow:

Namely, for a fixed interval , the rate of change of the total number of involved users,

, in this interval should be equal to the sum of the f low  with which they

arrive and the rate  with which new involved users appear within the limits . Infor-
mation in a social network is distributed from a high density of involved users to a low one; therefore, the

flow can be represented as . In [13], the function  is chosen in the form 

and describes the dynamics of changes in the number of active users. The uncertainty of the constructed
model lies in the fact that the distribution of the density of active users at the initial moment of time is
unknown and depends on the structure of the social network. Therefore, the task of identifying the initial
distribution of users in order to correctly describe the distribution of information in a particular network
and its further control/management becomes urgent.

Denote the initial values of the density of involved users by , . Interpolating
the vector of values  by cubic splines, we pass to a continuous formulation of the initial-
boundary value problem for the diffusion logistic model described by a parabolic partial differential equa-
tion (see [13]):

(2)

Here,  is the initial density function corresponding to the vector q. Specifically, ,
, and, on each interval [ ], , the function Q is a third-degree polynomial 

satisfying the smoothness conditions
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Table 1. Parameters of model (2) describing information dissemination in an online social network

Parameter Description Average
value

Units of
measure

popularity of information that favors information dissemination 
through non-structural activities such as the purposeful search by the 
user for the information under consideration

0.01 dist2/h

throughput: maximum possible number of active users 25 people/ dist

 growth rate of the number of involved users — 1/h

rate of decline in interest in information over time 1.5 —
residual speed 0.375 —
initial active user growth rate 1.65 —

d

K

( )r t
−β −  β β− − β β β 

( 1)2 21
3

1 1
=

t
e

β1

β2

β3
The class of initial distribution densities of active users is defined as

According to [13], if , then, by the maximum principle, there exists a unique positive solution
 of direct problem (2).

The average values and descriptions of the model parameters are presented in Table 1. Parameters ,
, and  in the considered model correspond to those presented in [13].

1.2. Formulation of the Inverse Problem
Assume that there is additional information of the following form:

(3)

where  is the solution of the direct problem for the initial density function , determined from
the set of parameters , . The inverse problem (2)–(3) consists in determining the set of parameters

 from data  of the form (3). The inverse problem can be written as , where

 and  is the operator of the inverse problem.

Note that, in the linear approximation for  and , there is a unique solution of the
system . In the case of , the solution is understood as a normal pseudosolution, i.e., a
solution realizing the minimum of the residual norm

In [14], in a linear approximation, the stability of the solution of the inverse problem (2)–(3) was studied
and it was shown that the condition number of the matrix  has the order of , which indicates the
instability of the solution of the inverse problem.

In this paper, the residual has the form

(4)

where .
By analogy, we formulate a discrete formulation of the objective functional:

(5)
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2. CONTINUOUS AND DISCRETE FORMULATIONS
OF THE GRADIENTS OF THE FUNCTIONAL

The study of continuous and discrete solutions of direct and inverse problems for the diffusion-logistic
model was inspired by Karchevskii [8], in which a similar analysis was done to solve the inverse problem
for the hyperbolic equation.

There are two approaches to the numerical solution of the formulated inverse problem (2)–(3). The
first consists of the following steps:

• pass from a continuous formulation of the direct problem  (  is the operator of the direct
problem) to a discrete one  (  is a finite-difference analogue of the operator of the direct prob-
lem; the function  is some approximation of the function  and  for , );

• write out the objective functional in a discrete formulation, ;

• obtain the formulation of the adjoint problem  and the gradient of the objective functional
in discrete form, ;

• solve the problem of minimizing the functional .
The second approach implies the following scheme of actions:
• write out the objective functional in a continuous formulation, ;

• obtain the formulation of the adjoint problem  and the expression for the gradient of the
objective functional in continuous form, ;

• pass to the problem ;
• write out the objective functional  approximating ;

• from the statement of the adjoint problem , pass to the problem ;
• get the relation for , approximating the gradient of the objective functional ;
• solve the problem of minimizing the functional .
The specificity of the formulation of the inverse problem (2)–(3) is the discrete character of additional

measurements, as well as the determination of the set of parameters  instead of the
function .

2.1. Gradient of the Functional in the Discrete Formulation
The discrete gradient obtained using the approach of Yu.G. Evtushenko and F.L. Chernous’ko [9–12]

is formulated for the discrete formulation of the considered model, i.e., for the problem

(6)

We transform it to the constraint

(7)

where  is the set of vectors , .

To each condition in (7), we put into correspondence a vector ; their union is the vector

, . We consider an analogue of the Lagrange function for a multistep
process (7):
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Then (see [9]),

(9)

(10)

We have the following lemma.

Lemma. The gradient of functional  has the form

(11)

where  corresponds to the value of  at a point  and the function  satisfies the adjoint prob-
lem

(12)

where  at  and  at .

Proof. The function  defined by formula (8) has the form

We find the derivative of the function  with respect to , which, according to (9), is a formula for

determining the function :
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Table 2. Discretized initial density function  used as an exact solution  of the inverse problem

Parameter

Value 5.8 1.7 1.9 1 0.95 0.7

( )Q x exq

0q 1q 2q 3q 4q 5q
For all , the component  does not enter into the expression for the function ; therefore,
we can set

Thus, we have obtained the formulation of the adjoint problem (12).
Since  for , we find the derivatives of the function  with respect to :

for , where  corresponds to the value of  at the point ( ). For  and , the
derivatives are, respectively,

Then (10) implies (11), which completes the proof of the lemma.

2.2. Gradient of the Functional in the Continuous Formulation
The gradient of functional (4) has the form

(13)

where the function  satisfies the solution of the adjoint problem

where .

In [15], formula (13) was derived for a more general formulation of problem (2) with an arbitrary right-
hand side.

Note that, due to the properties of the delta function, the adjoint problem can be written as (see [16])

3. NUMERICAL EXPERIMENTS

To solve the inverse problem (2)–(3), as synthetic data , we took the values of the solution of the
direct problem for the parameter values presented in Tables 1 and 2, at every tenth point in  and at
every twenty-fifth point in , i.e.,  and . The parameter values in Table 2 imitate real
data from the news site Digg.com, obtained in [13].
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In addition to the value of the functional, we measured the relative error

Here,  are the exact values of the discretized function  and  is the found solution of the inverse
problem, which corresponds to the minimum of the functional  (4).

3.1. Gradient Methods

The solution to the problem of minimizing the objective functionals  and  was obtained using
two gradient methods:

1. The gradient descent method (GDM) (see [17, 18]) is a classical one-step gradient method (1) with
a constant descent parameter . The rate of convergence in the functional (see [18]) is

2. The multilevel gradient method (MGM) (see [19, 20]) is a method of local optimization of a func-
tion of several variables. It is a modification of the gradient descent method, which can significantly
increase the convergence rate. The algorithm of the method has the following form:

In the case of MGM, the rate of convergence in the functional is estimated as (see [21])

where  is the Lipschitz constant for the gradient of the functional:

The GDM and MGM with continuous and discrete types of gradients were applied and analyzed.
Moreover, in the case of a discrete gradient, the GDM has a descent parameter  and the mini-
mum with respect to  in the MGM is on the interval  with a step . In the case of a continuous

gradient, , and the minimum in  is determined with a step of .

3.2. Finite-Difference Schemes for Solving Direct and Adjoint Problems
To construct difference schemes, we introduce a uniform grid in a closed region

:

where  and .
To apply the classical continuous approach, the initial approximation function  is determined

from the vector  (see Table 2) by cubic-spline interpolation.
Direct problem (2) is solved using an explicit finite-difference scheme with the order of approximation
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Table 3. Algorithms for solving inverse problem (2)–(3) in the case of continuous and discrete approaches

Discrete approach Continuous approach

(1) Direct problem (2) is solved by a finite difference method with the order of approximation O(τ + h2)
(2) Adjoint problem (12) is solved with the order 
of approximation O(τ + h2)

(2) Adjoint problem (14) is solved by a finite difference 
method with the order of approximation O(τ + h2)

(3) Objective functional gradient I '(q) is deter-
mined by formula (11)

(3) Objective functional gradient J '(q) is determined 
by formula (13)

(4) Next approximation of the solution to the inverse problem is computed as

 for GDM  for GDM

 and  for MGM are determined experimentally

+ = − α1 (1) '( )m m m
mq q I q + = − α1 (2) '( )m m m

mq q J q

α = α(1) (1)
m α = α(2) (2)

m

α(1)
m α(2)

m

Table 4. Solution of the inverse problem obtained by particle swarm optimization

Parameter

Value 5.809 1.697 1.901 0.999 0.949 0.701

0̂q 1̂q 2̂q 3̂q 4̂q 5̂q

Table 5. Results obtained by gradient descent methods and its modification

In the column of initial guess ,  is the vector of the solution of the inverse problem obtained using particle swarm optimiza-
tion (presented in Table 4), 0 is the zero vector,  is the number of iterations, and  is the program running time.

Method

GDM I 9.604 6.274 5380 3
MGM I 9.544 6.273 397 3
MGM II 0 9.029 6.262 245 2
GDM II 0 9.032 6.262 16374 9
GDM III 9.847 6.276 166862 93
MGM III 9.793 6.276 1372 11
MGM IV 0 9.047 6.261 1630 12
GDM IV 0 9.101 6.266 1005999 569
MGM V 0 11.26 6.254 1586 25

0q −× 4( ), 10J q −δ × 4, 10 iterN compt

q̂
q̂

q̂
q̂

0q q̂
iterN compt
In numerical calculations, we set , , , , and . Such values of  and
 were chosen in accordance with the data presented in [13], which illustrate that interest in information

is manifested by users with a distance  ranging from 1 to 6. It is within these boundaries that a significant
contribution to the change in the density of active users  occurs. The grid partition values  and 
are chosen so as to satisfy the Courant–Friedrichs–Lewy condition

Taking into account that , we have  and .

To analyze the stability of the solution of the direct problem, the Crank–Nicolson scheme with the
order of approximation  was implemented.

3.3. Comparative Analysis of Continuous and Discrete Formulations
We will conduct a comparative analysis of the approaches to solving the inverse problem: with an accu-

rate calculation of the gradient for the discrete problem (6)–(3) and with continuous formulation and dis-

= 1l = 6L = 24T = 50xN = 575tN l
L

x
( , )u x t xN tN

τ ≤
+

2

2
2

4 c

h
d r h

= max ( ) = 0.44c t
r r t = 0.1h τ = 0.04

τ +2 2( )O h
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Fig. 1. Graphs of (a) decreasing functionals  and  and (b) relative error  from 10th to the 100th iterations: the
use of (solid line) a continuous gradient and (dotted line) a discrete gradient of the objective functional. 
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cretization when calculating the gradient (2)–(3). The stages of similarity and differences of algorithms
for solving these inverse problems are shown in Table 3. Note that in both cases it is identical the direct
problem is solved, and the adjoint problems are solved by one finite-difference scheme, which are
included in the corresponding expressions for calculating the gradients of the target functional. The same
algorithms are applied to solving the corresponding minimization problems. As a comparison of the two
approaches, the value of the target functional and the relative error of the reconstructed solutions are ana-
lyzed. 

The solution obtained using gradient methods depends on the initial approximation. Two options for
choosing the initial approximation were considered (see [19, 22, 23]): the solution of the inverse problem
obtained using the method of global particle swarm optimization (PSO), presented in Table 4, and zero
initial guess. The zero initial guess was chosen from the physical formulation, since  describes the first
reaction of users to the news in the absence of additional information about this reaction. In the above
implementation of PSO, the functional  and relative error .

Table 5 presents the results obtained by the following methods:
• GDM I and MGM I: methods with a continuous gradient and an initial approximation in the form

of a solution obtained by PSO;
• GDM II and MGM II: methods with continuous gradient and zero initial guess;
• GDM III and MGM III: methods with a discrete gradient and an initial guess in the form of a solu-

tion obtained by PSO;
• GDM IV and MGM IV: methods with discrete gradient and zero initial guess;
• MGM V: a method with a zero initial guess and a discrete gradient in the case when the direct and

adjoint problems are numerically solved using the Crank–Nicolson finite difference scheme.

0q

−× 3ˆ( ) = 1.114 10J q −δ × 3= 1.533 10
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Table 6. Results of solving the inverse problem with a noise level  in the data obtained by the multilevel
gradient method with a gradient in discrete and continuous formulations

Initial guess , %
Discrete gradient (11) Continuous gradient (13)

Zero 1 1.133 × 10–2 6.706 × 10–4 9.628 × 10–2 7.356 × 10–4

5 1.475 × 10–1 8.447 × 10–4 3.272 × 10–3 6.399 × 10–4

10 3.461 × 10–2 7.305 × 10–4 3.286 × 10–3 6.407 × 10–4

Solution by PSO 1 1.242 × 10–3 6.271 × 10–4 1.403 × 10–3 6.262 × 10–4

5 3.165 × 10–2 6.431 × 10–4 1.865 × 10–3 6.261 × 10–4

10 16.795 1.707 × 10–2 11.289 1.388 × 10–2

ε = 1, 5, 10%

ε
( )I q δ ( )J q δ
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It can be seen from Table 5 that the MGM finds a solution with a given accuracy, making 10 times fewer
iterations than the GDM under the same initial conditions and forms of finding the gradient of the objec-
tive functional. In the case of an initial approximation  and a continuous gradient (i.e., GDM I and
MGM I), the running times of the programs do not differ, but, in implementations of gradient methods,
the MGM finds a solution with a given accuracy several times faster than the GDM. With a zero initial
guess, the methods work several times longer but achieve greater accuracy only at the sixth decimal place.
In the case of a discrete gradient, the MGM reaches a solution of the same order several times longer, and
the GDM is more than 30 times longer in time. At the same time, MGM V has the smallest error among
all the considered methods, but works several times longer than other implementations of the MGM. In
Fig. 1, the continuous lines represent the curves obtained by MGM II in the case of continuous calcula-
tion of the gradient of the functional, and the dotted lines represent the curves obtained by MGM IV in
the case of a discrete implementation of the gradient. It follows from Fig. 1 that the value of the functional
and the error in the case of MGM II decrease faster.

We also analyzed the case of noisy data:

where  is the noise level and  is a random variable with a standard normal distribution.
For noisy data of the inverse problem, the MGM was implemented with different initial approxima-

tions and the direct problem was solved by the finite difference method using the Crank–Nicolson
scheme. The results of numerical experiments for this formulation of the inverse problem in the case of
discrete and continuous gradients are given in Table 6. It can be seen that, in the case of a zero initial guess,
the discrete gradient method has the smallest relative error for noise of , while the continuous gradient
method has the smallest value for noise of  and . In the case of the initial approximation in the form
of a solution obtained using PSO, the accuracy of the recovered solutions of the inverse problem differ
insignificantly.

This paper investigates two approaches to solving the problem of source recovery, in which two finite-
difference schemes were implemented, in which the order of approximation in the spatial variable coin-
cides and equals 2, and in the temporal have the 1st and 2nd (Krank–Nicholson) orders. Tables 5 and 6
show experimentally that the convergence result is not sensitive to the order of approximation by the time
variable. Based on convergence estimates and iterative expressions for determining the solution of the
inverse problem, the order of approximation by a spatial variable when solving direct and adjoint problems
has a great influence on the accuracy of the obtained solution and, most likely, on the convergence rate of
gradient methods. In the case of determining the density of the initial distribution of users relative to pop-
ular news in online social networks with high bandwidth (Twitter, Facebook, Reddit, etc.), it is necessary
to qualitatively determine the type of user engagement and the distribution structure. Separate studies are
needed to obtain more accurate estimates of the relationship between the convergence rate of gradient
methods and approximation accuracy.

CONCLUSIONS
This paper presents a comparative analysis of the numerical solution of the source identification prob-

lem for the diffusion-logistics model based on the data on the diffusion process at fixed points in time and
space by gradient methods for the cases of continuous (classical) and discrete formulations. Expressions
for calculating the gradient of the objective functional in the case of two formulations related to the solu-
tion of the corresponding adjoint problems have been obtained.

The direct and adjoint problems were solved using an explicit scheme with an order of approximation
 and the Courant–Friedrichs–Lewy condition and a semi-implicit Crank–Nicolson scheme

with an order of approximation . The problem minimizing an objective functional was solved by
gradient descent methods with a constant descent parameter and by a multilevel gradient method. Two
variants of the initial approximation of the solution of the inverse problem were analyzed: zero guess and
an approximation obtained by particle swarm optimization. It has been shown that, in the case of a non-
zero initial guess, using the expression for the gradient of the objective functional in a continuous formu-
lation, the running times of the programs do not differ; however, in other implementations of the gradient
methods, the multilevel gradient method finds a solution with a given accuracy several times faster than
the gradient descent method. With a zero initial guess, the methods work several times longer but achieve
higher accuracy. In the case of a discrete gradient, the multilevel gradient method is several times longer
in reaching a solution of the same order, and the gradient descent method is more than 30 times longer.

q̂

ε + εγ … …1 2= max , = 1, , , = 1, , ,ik ik ikf f f i N k N

ε ∈ (0, 1) γ

1%
5 10%

τ + 2( )O h
τ +2 2( )O h
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 62  No. 4  2022



684 ZVONAREVA, KRIVOROT’KO
It has been shown that, in the case of cubic-spline approximation of discrete functions in the direct
problem, differences in the accuracy of the obtained solutions of the inverse problems for continuous and
discrete formulations are observed only in the sixth decimal place in the case of noise-free synthetic data
describing the dynamics of involved users in an online social network. However, the computer time for
solving the inverse problem in discrete form is greater than its continuous counterpart.
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