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Abstract: The problem of identification of coefficients and initial conditions for a boundary value problem
for parabolic equations that reduces to a minimization problem of a misfit function is investigated. Firstly,
the tensor train decomposition approach is presented as a global convergence algorithm. The idea of the
proposedmethod is to extract the tensor structure of the optimized functional anduse it formultidimensional
optimization problems. Secondly, for the refinement of the unknown parameters, three local optimization
approaches are implemented and compared: Nelder–Mead simplex method, gradient method of minimum
errors, adaptive gradient method. For gradient methods, the evident formula for the continuous gradient of
themisfit function is obtained. The identificationproblem for the diffusive logisticmathematicalmodelwhich
can be applied to social sciences (online social networks), economy (spatial Solowmodel) and epidemiology
(coronavirus COVID-19, HIV, etc.) is considered. The numerical results for information propagation in online
social network are presented and discussed.
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1 Introduction
We consider the initial boundary value problem for the system of partial differential equations of parabolic
type

∂yj
∂t
= dj

∂2yj
∂x2
+ μj(y, φ), t ∈ (t0, T), x ∈ (l, L), (1.1a)

yj(x, t0) = ψj(x), x ∈ (l, L), (1.1b)
∂yj
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=l
=
∂yj
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L
= 0, t ∈ (t0, T). (1.1c)

Here j = 1, . . . , N, y(x, t) = (y1(x, t), . . . , yN(x, t)), dj ≥ 0andφ(t) = (φ1, . . . , φM) are unknowncoefficients,
ψj(x) are unknown initial conditions, l > 0, μj is a continuous function.

Suppose that the additional information can be measured:

yj(xi , tk; q) = F
j
ik , k = 1, . . . , K, i = 1, . . . , Nx , j ∈ J ⊂ {1, . . . , N}. (1.2)
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We investigate the problemof identification of coefficients and initial data q = (φ(t), d, ψ(x)) ∈ Q (inverse
problem) from (1.1a)–(1.1c) using additional information F jik (1.2). Here Q is the set of admissible solutions
of the inverse problem. Three applications of mathematical model (1.1a)–(1.1c) that describe information
propagation in online social networks, stock dynamics in the economy and infectious disease propagation in
epidemiology (tuberculosis, HIV, Wuhan coronavirus 2019-nCoV, etc.) are given as examples in Section 3.

Inverse problem (1.1a)–(1.1c), (1.2) can be rewritten in operator form A(q) = f , where A : Q → F is an
injective operator, q ∈ Q, f ∈ F, F is a Euclidean space of data f = (F j11, . . . , F

j
NxK)j∈J . The inverse problem

A(q) = f is ill-posed for many applications, i.e. its solution may not exist and/or its solution is non-unique
and/or unstable to errors inmeasurements (1.2) [21, 26]. In the current paper, the inverse problem is reduced
to the minimization problem

q⋆ = argmin
q∈Q

J(q), J(q) = ⟨A(q) − f, A(q) − f⟩, (1.3)

where the functional J(q) characterizes the quadratic deviation of themodel data from the experimental ones
(see Section 3).

There exist many optimization methods for solving minimization problem (1.3) that could be divided
into three groups: local, global and hybrid (see Section 4 for more details). But in real applications, the
vector of parameters q could be huge and classical nature inspired algorithms (genetic algorithm, simula-
tion annealing, particle swarm optimization, etc.), gradient approaches and so on require large computing
resources and do not guarantee finding a global minimum. We apply a more powerful approach for solving
multidimensional minimization problem (1.3) named tensor train decomposition that is based on a tensor
representation of the initial functional and applying the tensor decomposition properties and tensor inter-
polations [32–34, 41]. The advantages of this method consist in implementation of main algebra operations
and multi-parallel architecture for the computation. Since tensor train optimization finds the area of global
minima of (1.3), we apply and compare three local methods: Nelder–Mead that does not require the gradi-
ent of functional J(q) and two types of gradient approaches for which we derive the evident formula of the
gradient of functional J(q) that is based on a solution of the corresponding adjoint problem (Section 4).

We numerically investigate the problem of parameter identification in the mathematical model of social
networks based on a parabolic equation. The comparison and domain of applicability of the investigated
methods are analyzed and discussed (Section 5).

2 Brief historical review of mathematical modeling
in social sciences

The specifics of the dissemination of information in society and the development of socially significant dis-
eases (tuberculosis, HIV/AIDS, coronavirus COVID-19) depend on the region. However, the statistically cal-
culated parameters (for example, the probability of the appearance of information in the social network,
the rate of infection development, the mortality parameters, etc.) are averages. The investigation of model
populations, on the one hand, can lead to erroneous conclusions (since real populations are significantly
heterogeneous) and, on the other hand, it cannot serve as a tool for assessing the current situation.

One of the most effective methods of monitoring and managing social and epidemiological processes is
mathematical modeling, namely the development and identification of mathematical models that describe
the processes of information dissemination in social networks and infections in the population. Suchmodels
are described by systems of differential equations, the coefficients of which characterize the distribution of
information, population and disease development. To control information in social networks and epidemics
in individual regions and economic processes, it is necessary to refine the model coefficients and initial data
by some additional information.

Ordinary differential equations. In recent years, online social networks, such as Twitter and Facebook,
have become the main source of information exchange. A large amount of data available to researchers
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has increased interest in studying the process of information dissemination in online networks. One of the
approaches to construct mathematical models of social processes is the principle of constructing mathe-
matical models of epidemiological processes (in particular, describing socially significant diseases, such
as tuberculosis, HIV/AIDS) based on the chamber structure and probabilistic transitions between homoge-
neous groups [12] (mathematical models of Wuhan coronavirus 2019-nCoV [8, 39], tuberculosis [3, 6, 36],
HIV [16]). The spread of the virus in a homogeneous network based on the epidemiological model was
investigated in [20]. Such mathematical models are based on systems of ordinary differential equations
(mathematical model (1.1a)–(1.1c) with dj ≡ 0), the coefficients of which in many cases are unknown or
given approximately. This leads to solving of inverse problems. In many models, it is assumed that the social
system is homogeneous, and individuals are in equal status (the same degree of spread, the probability of
infection, etc.), which does not take into account the specifics of the process. This entails the development
of more complex mathematical models.

Partial differential equations. To build a more complete picture of the development of social processes, it
is necessary to take into account migration, age data and changes in time. Such models are described by
partial differential equations (PDE). F. Wang, H. Wang and K. Xu [38] proposed to use partial differential
equations built on intuitive cyber-distance among online users to study both temporal and spatial patterns
of information diffusion process in online social networks. A detailed review of mathematical models for
social networks is given in [19]. The PDE-based models for online social networks in [30] are spatial dynam-
ical systems (1.1a)–(1.1c) that take into account the influence of the underlying network structure as well
as information contents to predict information diffusion over both temporal and spatial dimensions. In the
paper [10], a non-autonomous diffusive logistic model with indefinite weight and Robin boundary condition
is developed to describe information diffusion in online social networks. The model is validated with a real
dataset fromanonline social network, Digg.com, and the simulation shows that the logisticmodelwith Robin
boundary condition is able to more accurately predict the density of influenced users.

Stochastic differential equations. Real social systems are always exposed to external influences that are not
completely understandable or impossible for explicit models (enzymatic processes, energy needs, smoking,
stress effects, information wars, etc.), and therefore there is a growing need to expand deterministic mod-
els to models which cover more complex variations in dynamics. A natural continuation of the models of
deterministic differential equations is a system of stochastic differential equations, where the corresponding
parameters are modeled as suitable random processes, or stochastic processes are added to the equations of
the motion system. An analysis of stochastic differential equations and numerical studies of the solution of
a direct problem are given in the works of P.-L. Lions [28, 29] and H. T. Banks [4, 5].

However, each social network has its own platform and structure, and therefore the parameters that
characterize these indicators vary. For the best result of modeling and information control, it is necessary
to identify the coefficients and initial conditions (inverse problem) for each specific case. In the papers of
S. I. Kabanikhin, O. I. Krivorotko and co-authors [22, 23], the inverse problem for ordinary differential equa-
tions describing the spread of tuberculosis and HIV in the regions of the Russian Federation and the inverse
problem of immunology (intracellular dynamics of HIV) [24] were solved. An analysis of the structural iden-
tifiability of the mathematical models under study, which makes it possible to identify the region of the
correctness of the inverse problem, is given in the paper [25].

We concentrate on PDE-based mathematical models arising in social sciences such as social networks,
epidemiology/immunology, economics.

3 Examples and variational formulation of inverse problem for PDE
Mathematical model (1.1a) can describe the dynamics of social, economical and epidemiological processes.
For example, in social networks, j = 1 and parameters and functions in problem (1.1a)–(1.1c) have the fol-
lowing interpretation [10]:
∙ y(x, t) is a density of influenced users with a distance of x at time t;
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∙ d represents the popularity of information which promotes the spread of the information through non-
structure based activities such as search;

∙ μ(y, φ) is a local growth function (death and birth) that has, e.g., the form μ(y, φ) = r(t)y(x, t)(1 − y(x,t)Kcap );
∙ r(t) represents the intrinsic growth rate of influenced users with the same distance and measures how

fast the information spreads within the users with the same distance;
∙ Kcap is a carrying capacity,which is themaximumpossible density of influencedusers at a givendistance;
∙ l and L represent the lower and upper bounds of the distances between the source and other social

network users;
∙ ψ(x) ≥ 0 is the unknown initial density function; each information has its own unique initial function.
Mathematical model (1.1a) arises in modern economy and is called the spatial Solow model [7, 35] (j = 1):
∙ y(x, t) denotes the capital stock held by the representative household located at x and time t;
∙ μ(y, φ) = A(x, t)f(y(x, t)) − εy(x, t);
∙ A(x, t) denotes the technological level at x and time t;
∙ f(y(x, t)) is the production function that is assumed to be non-negative, increasing and concave;
∙ ε is the depreciation rate;
∙ ψ(x) ≥ 0 is an initial capital distribution.
PDE (1.1a) for age-structured populations describes the epidemiological process and is called Kermack–
McKendrick equation [27]:
∙ yj(x, t) ≥ 0 represents the density of the population (infected and recovered individuals of different

groups) of age x and time t;
∙ μj(y, φ) is a local growth function that describes the behavior of the j-th group;
∙ the sparsity coefficient dj characterizes the migration at the j-th group;
∙ ψj(x) ≥ 0 is an initial population at the j-th group.
Inverse problem (1.1a)–(1.1c), (1.2) is ill-posed, and most often its solutions are unstable to small per-
turbations in the data [21]. One of the types of solving ill-posed problems is reducing inverse problems to
a variational formulation (1.3). For this purpose, we consider the misfit function

J(q) = γ∑
j⊂J

K
∑
k=1

Nx
∑
i=1
|yj(xi , tk; q) − F

j
ik|

2, γ = (T − t0) ⋅ (L − l)
K ⋅ Nx

, (3.1)

that should to beminimized. Finally, the solution q⋆ of inverse problem (1.1a)–(1.1c), (1.2) canbe considered
as the solution of an optimization problem [21]:

q⋆ = argmin
q∈Q

J(q). (3.2)

4 Optimization methods
There are several methods for solving minimization problem (3.1), and they can be split into three groups:
local, global and hybrid optimization methods. An extensive review of the existing methods, including their
classifications and properties, can be found in [1]. There are two groups of local optimization methods: the
direct ones which do not require the derivative of the objective function (e.g., Hooke–Jeaves method, Nelder–
Meadmethod) and the gradient basedmethods (e.g., theGauss–Newton andLevenberg–Marquardmethods).
Although the local optimization methods usually work fast and their convergence to a local minimum can be
proved, theirmain drawback is that they canmiss the globalminimum, especially in the case of a high dimen-
sionality of the parameter space. Global optimization methods can be used to explore rather large regions of
the parameter space. However, they usually are slow and have no theoretical proof of convergence. They can
be formulated as stochastic (simulated annealing, evolutionary algorithms) or deterministic (covering meth-
ods) techniques [1] such as the method of nonuniform coverings proposed by Y. G. Evtushenko for functions
that comply with the Lipschitz condition [13]. Evolutionary algorithms are usually most suitable for a large
search space because they escape local minima and are intrinsically parallel. The covering methods require
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Figure 1: Illustration of the evaluation of one element of a fourth-order tensor (with four indices) having a tensor train
decomposition. G1 , G2 , G3 , Gt are the tensor carriages of this decomposition. T(2, 4, 1, 3) ∈ R is obtained by the product
of one row vector G1(2), two matrices G2(4) and G3(1), and one column vector Gt(3). The dimensions of these matrices
are respectively 1 × 7, 7 × 3, 3 × 5 and 5 × 1. G1(2), G2(4), G3(1) and Gt(3) are the extraction of one layer (identified by
a darker shade) in the tensor G1, G2, G3, Gt , respectively.

some prior information about the function and can locate the optima with the given accuracy. For example,
the main idea of the method of nonuniform coverings consists in division of the solution set into subsets
whose union coincides with the original set. The misfit function on different subsets has certain properties
(it satisfies the Lipschitz condition, convexity, existence of the second derivative, etc.), which speeds up the
calculations [14, 15]. Hybridmethods are based on the following idea: global optimization is used to explore
the parameter space to locate the starting points for further local optimization [23]. To reduce the complexity
of the parameter estimation task, there exist several support techniques such as constraining the parameter
space, data smoothing and others [9].

The majority of the state-of-the-art global optimization methods are based on the tensor representation
of an initial functional and applying the tensor decomposition properties and tensor interpolations [32–34],
and we use it in numerical calculations and show its advantages.

4.1 Tensor train decomposition

Optimization of functional (3.1) is a complex problembecause it is a problemof global optimization for amul-
tidimensional, usually non-convex functional with large dimension and a huge number of local minimums.
The tensor train (TT) approach [33] is based on decomposition of a multidimensional tensor T ∈ Rn1×n2×⋅⋅⋅×np
to the “train” of the carriages tensors,

T(i1; i2; . . . ; ip) =
r0;...;rp
∑

α0=1;...;αp=1
G1(α0; i1; α1) ⋅ . . . ⋅ Gp(αp−1; ip; αp).

An example of TT decomposition is illustrated in Figure 1. Although this approach is metaheuristic and
cannot guarantee that the global optimum is reached, it uses structure of the functional and, generally, works
faster and more robustly than other metaheuristic and stochastic methods [41].

4.1.1 TT algorithm for optimization problem

Consider global minimization problem (3.2). This problem could be transformed to an equivalent problem of
the magnitude maximization of the continuous and monotonous mapping of J to the interval [0;+∞),

q⋆ = argmin
q∈Q
|g(q)|, g(q) = arcctg{J(q)}. (4.1)

Here Q is a initial domain of the function J and can be represented as a p-dimensional parallelepiped
(p = M + N + 1). So q = (q1, . . . , qp)T is a vector, and suppose that each element qj lies in the interval [aj , bj],
j = 1, . . . , p. Introduce the uniform grid on each interval [aj , bj] with fixed step hj =

bj−aj
n−1 , j = 1, . . . , p and

n nodes in each direction.
The misfit function values on the grid form the tensor T ∈ Rn×⋅⋅⋅×n with elements

T(i1, . . . , ip) = g(q(i1)1 , . . . , q(ip)p ).
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Figure 2: The general scheme of TT decomposition algorithm.

Here q(ij)j is the ij-th point on the grid for element qj. Introduce the vector of indexes i = (i1, . . . , ip), and
rewrite the formula as T(i) = g(qi). Then the discrete minimization problem is represented in the form

i = argmin
j=1,...,np
|T(j)|. (4.2)

If the grid is fine enough, then the solutions of (4.1) and (4.2) are expected to be close.
Problem (4.2) consists in finding themaximal magnitude element of a p-dimensional tensor T ∈ Rn×⋅⋅⋅×n.

For example, if a number of coefficients is equal to 20 and a number of mesh nodes in space x is equal to 100,
then the number of unknown parameters is equal to 121. If n = 100, then the number of elements of tensor T
is equal to 100121.

In this case, to reduce the problem complexity, the technique based on the TT cross interpolationmachin-
ery, which exploits the matrix cross interpolation algorithm [17, 18, 37] applied to heuristically selected
submatrices in the unfolding matrices of the given tensor, could be used. The obtained method, named TT
algorithm, takes only O(pnr3max) arithmetic operations, O(pnr2max) function calculations and O(nrmax) local
optimizations, where rmax is the maximum rank of the used tensors.

The TT global optimization method iteratively performs the following steps:
∙ already inspected points are used to generate submatrices of the unfolding matrices;
∙ these submatrices are approximated by thematrix cross approximationmethod with rank bounded from

above by rmax;
∙ the interpolation points and local minima in their vicinity (projected to the grid) are used to form new

sets of “hopefully better” points;
∙ the sets of points are extended by the points from “neighboring” unfolding matrices and by rmax points

considered as the best of all inspected values.
The general scheme of this method is presented in Figure 2; a more detailed description of the algorithm is
available in [40, 41].

4.2 Gradient type methods

Most gradientmethods are reduced to the iterationprocess qn+1 = qn − αnJ󸀠(qn),where αn is a descent param-
eter, J󸀠(qn) is the gradient of the misfit function at point qn. Note that convergence of the gradient method
depends on the initial approximation q0, and as a result, one has the local convergence theorem [21, 26].

Thedependenceon the vector of parameters q showsat y(x, t; q) := y(x, t). Function ̂y : (t0, T) 󳨃→ H2(l, L)
is amapping, associated by the function y(x, t), that is, [ ̂y(t)](x) := y(x, t). Suppose thatψ,ψ + δψ ∈ H2(l, L),
δy(x, t; δq) := y(x, t; q + δq) − y(x, t; q), where y(x, t; q) ∈ C(t0, T;H2(l, L)) is a solution of problem (1.1a)–
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(1.1c) with ψ ∈ H2(l, L). Then the deviation δy := δy(x, t; δq) satisfies the following initial boundary value
problem with an accuracy up to the terms of order o(|δq|2):

{{{{{
{{{{{
{

Lδyj = 0, t ∈ (t0, T), x ∈ (l, L),
δyj(x, t0) = δψj(x), x ∈ (l, L),
∂δyj
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=l
=
∂δyj
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L
= 0, t ∈ (t0, T).

Here
Lδyj :=

∂δyj
∂t
− dj

∂2δyj
∂x2
− aj(δy, δφ, y, δd),

aj(δy, δφ, y, δd) =
N
∑
n=1

Pjnδyn +
M
∑
m=1

Rjmδφm + δdj
∂2yj
∂x2

, j = 1, . . . , N,

P = { ∂μ(y,φ)∂y } and R = {
∂μ(y,φ)
∂φ } are Jacobimatrices of vector function μ at spacesRN × RN andRN × RM, respec-

tively.

Proposition 1. The gradient of misfit function (3.1) has the form

J󸀠(q) = (
L

∫
l

RTΨ(x, t) dx,
L

∫
l

T

∫
t0

∂2y
∂x2
(x, t)Ψ(x, t) dt dx, Ψ(x, t0))

T

, (4.3)

where vector function Ψ(x, t) satisfies the adjoint problem (j = 1, . . . , N)

{{{{{{{{
{{{{{{{{
{

∂Ψj

∂t
= −dj

∂2Ψj

∂x2
−

N
∑
n=1

PnjΨn + Bj , t ∈ (t0, T), x ∈ (l, L),

Ψj(x, T) = 0, x ∈ (l, L),
∂Ψj

∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=l
=
∂Ψj

∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L
= 0, t ∈ (t0, T).

(4.4)

Here

Bj = 2γ
K
∑
k=1

Nx
∑
i=1

T

∫
t0

L

∫
l

(yj(x, t; q) − F
j
ik)δ(t − tk)δ(x − xi) dx dt,

and δ(t − tk) is a Dirac delta function.

Proof. Consider misfit function (3.1) variation, and apply the rule a2 − b2 = (a − b)(a + b),

δJ := J(q + δq) − J(q) = γ
K
∑
k=1

Nx
∑
i=1

2(y(xi , tk; q) − Fik)δy(xi , tk; q) + γ
K
∑
k=1

Nx
∑
i=1
|δy(xi , tk; δq)|2

= γ
K
∑
k=1

Nx
∑
i=1

T

∫
t0

L

∫
l

2(y(x, t; q) − Fik)δy(x, t; q)δ(t − tk)δ(x − xi) dx dt

+ γ
K
∑
k=1

Nx
∑
i=1
|δy(xi , tk; δq)|2. (4.5)

Consider the scalar product in L2((0, T) ∪ (l, L)) space

⟨Lδyj , Ψ⟩ = ⟨
∂δyj
∂t

, Ψj⟩ − dj⟨
∂2δyj
∂x2

, Ψj⟩ − ⟨aj(δy, δφ, y, δd), Ψj⟩. (4.6)

Write in detail each term of the equation (4.6). Using differentiation by parts and the initial conditions of
direct problem (1.1b) and adjoint problem (4.4), we get the following expression for the first term:

⟨
∂δyj
∂t

, Ψj⟩ =
L

∫
l

T

∫
t0

∂δyj
∂t

Ψj dt dx = −⟨δyj ,
∂Ψj

∂t ⟩
−

L

∫
l

δψj(x)Ψj(x, t0) dx.
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The second term in (4.6) after using differentiation by parts twice and the boundary conditions of direct
problem (1.1c) and adjoint problem (4.4) has the form

dj⟨
∂2δyj
∂x2

, Ψj⟩ = dj
L

∫
l

T

∫
t0

∂2δyj
∂x2

Ψj dt dx = ⟨δyj , dj
∂2Ψj

∂x2
⟩.

The last term in (4.6) is rewritten as follows using the linearity of a scalar product:

⟨aj(δy, δφ, y, δd), Ψj⟩ = ⟨
N
∑
n=1

Pjnδyn , Ψj⟩+⟨
M
∑
m=1

Rjmδφm , Ψj⟩+ ⟨δdj
∂2yj
∂x2

, Ψj⟩

= ⟨δyj ,
N
∑
n=1

PnjΨn⟩+⟨δφj ,
N
∑
m=1

RmjΨm⟩+ δdj⟨
∂2yj
∂x2

, Ψj⟩.

Collecting all equations to expression (4.6), using adjoint problem (4.4) and noting that formula (4.6) is
equal to zero, we get the following equation for j = 1, . . . , N:

Bjδyj(x, t; q) =
L

∫
l

δψj(x)Ψj(x, t0) dx + δdj
T

∫
t0

L

∫
l

∂2yj
∂x2

Ψj dx dt +
T

∫
t0

δφj
L

∫
l

N
∑
m=1

RmjΨm dx dt.

Using formula (4.5), note that

N
∑
j=1
Bjδyj(x, t; q) = δJ − γ

K
∑
k=1

Nx
∑
i=1
|δy(xi , tk; δq)|2.

Suppose that γ∑Kk=1∑
Nx
i=1|δy(xi , tk; δq)|

2 ≈ o(‖δq‖2). After comparisonwith the Freshet derivative formula for
the misfit function δJ = ⟨J󸀠, δq⟩ + o(‖δq‖2), we get the gradient J󸀠(q) (see (4.3)) from the space RM+N+1.

4.2.1 Algorithm of the gradient method of minimum errors

The type of the gradient method depends on descent parameter αn. We propose the algorithm of a gradient
method of minimum errors [23] as follows (Algorithm 1).
(1) Set an initial approximation vector q0 and stopping parameter ε > 0. Suppose thatwe have qn. Showhow

to get the next approximation qn+1.
(2) Check the stop condition: if J(qn) < ε, then qn is an approximate solution of inverse problem (1.1a)–

(1.1c), (1.2). Otherwise, go to step (3).
(3) Solve direct problem (1.1a)–(1.1c) for a given set of the parameters qn by an explicit finite difference

scheme of second-order approximation, and get yj(xi , tk; qn), i = 1, . . . , Nx, k = 1, . . . , K, j ⊂ J.
(4) Solve adjoint problem (4.4) by an explicit finite difference scheme of second-order approximation, and

get the solution Ψj(x, t), j ⊂ J.
(5) Determine the gradient of misfit function J(qn) by formula (4.3).
(6) Calculate the descent parameter αn = 2J(qn)/‖J󸀠(qn)‖ for the minimum errors gradient method.
(7) Calculate the next approximation qn+1 = qn − αnJ󸀠(qn), and go to step (2).

4.2.2 Adaptive gradient algorithm

The adaptive gradient algorithm (AdaGrad) is a modified gradient descent algorithm with per-parameter
learning rate, first published in 2011 [11]. It “adapts” the learning rate to the parameters, performing smaller
updates (i.e. low learning rates) for parameters associated with frequently occurring features, and larger
updates (i.e. high learning rates) for parameters associated with infrequent features.
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Result: Get the approximate solution qn+1
Set stopping parameter ε > 0, iteration number n = 0;
Read the values q0;
Calculate J(q0) using (3.1);
while J(qn) > ε do

yj(x, t; qn) ← direct_problem(qn);
Calculate J(qn) using (3.1);
Ψj(x, t; qn) ← adjoint_problem(yj(x, t; qn), F

j
ik , qn);

Calculate J󸀠(qn) using (4.3);
Calculate descent parameter αn = 2J(qn)/‖J󸀠(qn)‖;
qn+1 ← qn − αnJ󸀠(qn);
n ← n + 1;

end

Algorithm 1: Gradient method of minimum errors.

Result: Get the approximate solution qn+1
Set descent parameter α > 0, stopping parameter ε > 0, iteration number n = 0 and G = I (identity matrix);
Read the values q0;
Calculate J(q0) using (3.1);
while J(qn) > ε do

yj(x, t; qn) ← direct_problem(qn);
Calculate J(qn) using (3.1);
Ψj(x, t; qn) ← adjoint_problem(yj(x, t; qn), F

j
ik , qn);

Calculate J󸀠(qn) using (4.3);
Update G using (4.7);
Calculate descent parameter αn = α diag(G)−

1
2 ;

qn+1 ← qn − αn ∘ J󸀠(qn);
n ← n + 1;

end

Algorithm 2: Adaptive gradient method (AdaGrad).

This method also depends on descent parameter α but, in this case, this is multiplied with the elements
of a vector Gi,j which is the diagonal of the outer product matrix

G =
N
∑
n=1

gngTn , (4.7)

where gn = ∇J(qn) is the gradient at iteration n. The diagonal is given by

Gj,j =
N
∑
n=1

g2n,j .

The AdaGrad algorithm is as follows [11] (Algorithm 2).
(1) Set an initial approximation vector q0, descent parameter α > 0 and stopping parameter ε > 0. Suppose

that we have qn. Show how to get the next approximation qn+1.
(2) Check the stop condition: if J(qn) < ε, then qn is an approximate solution of inverse problem (1.1a)–

(1.1c), (1.2). Otherwise, go to step (3).
(3) Solve direct problem (1.1a)–(1.1c) for a given set of the parameters qn by an explicit finite difference

scheme of second-order approximation, and get yj(xi , tk; qn), i = 1, . . . , Nx, k = 1, . . . , K, j ⊂ J.
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(4) Solve adjoint problem (4.4) by an explicit finite difference scheme of second-order approximation, and
get the solution Ψj(x, t), j ⊂ J.

(5) Determine the gradient of misfit function J(qn) by formula (4.3).
(6) Update the outer product matrix by formula (4.7).
(7) Calculate the descent parameter αn = α diag(G)−

1
2 .

(8) Calculate the next approximation qn+1 = qn − αn ∘ J󸀠(qn), and go to step (2).

5 Numerical solution of inverse problem for the mathematical
models of a social network

We apply the proposed optimization algorithms to the inverse problem for themathematical diffusive logistic
model of type (1.1a) arising in online social networks [38] (number of equations N = 1),

{{{{{{{
{{{{{{{
{

∂y
∂t
= d ∂

2y
∂x2
+ r(t)y(x, t)(1 − y(x, t)Kcap

), t ∈ (1, T), x ∈ (l, L),

y(x, 1) = ψ(x), x ∈ (l, L),
∂y
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=l
=
∂y
∂x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L
= 0, t ∈ (1, T).

(5.1)

y(xi , tk) = Fik , i = 1, . . . , Nx , k = 1, . . . , K. (5.2)

The description of all parameters and functions is presented in Section 3 and Table 1. Here we put

r(t) = β2
β1
− e−β1(t−1)(β2β1

− β3).

Since the initial density of influenced users ψ(x) depends on social network and information type, we get ψi,
i = 1, . . . , Nx, from [38] (describing the situation of the information network Digg.com) as an “exact” initial
condition and then approximate it on (l, L).

Inverse problem (5.1), (5.2) consists in determination of the vector function

q = (d, Kcap, β1, β2, β3, ψ1, . . . , ψNx )

from (5.1) using additional information (5.2). For getting the synthetic inverse problem data (5.2), we set an
“exact” solution qex according to Table 1 and solve direct model (5.1) with initial condition as in [38] by an
explicit finite difference schemeof the second-order approximation,with a grid of 50points on the x-axis and,
according to the Courant condition, 500 points on the t-axis. We set the distance from source of information
Nx = 6 on friendship interval l = 1, L = 6 andmeasure the density of influenced users every hour from t1 = 3
to t6 = 10, K = 8, during T = 24 hours.

To obtain the best results, we combine the algorithms according to the pipeline: a global optimization
algorithm toget a good initial approximation, thena local optimizationmethod to get a result.Weuse the local
optimization gradient methods described in Section 4.2 and the Nelder–Mead method based on function
comparison [31].

Symbol Description Average value

d Popularity of information 0.01
Kcap Carrying capacity 25
β1 Rate of decline in information over time 1.5
β2 Residual speed 0.375
β3 Initial growth rate of the number of influenced users 1.65

Table 1: The description and values of parameters of the mathematical model (5.1).
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Figure 3: The exact and reconstruction functions r(t) with parameters from Table 2 and the relative error E(r).

Figure 4: Reconstruction of function ψ(x) and “exact” points ψi, i = 1, . . . , 6. Here the relative error ENM(ψ) = 0.0668,
EGM(ψ) = 0.1978 and EADA(ψ) = 0.128 for combined methods based on Nelder–Mead and gradient methods respectively.

Suppose that each element qj, j = 1, . . . , 11, lies in the interval [0, 6] and the uniform grid on each inter-
val for the TT method is 256 nodes in each direction (rmax = 10). Solving the inverse problem under these
conditions by the combinedmethod,weget the following reconstructions of functions r(t) andψ(x) (Figures 3
and 4). Introduce the relative error for reconstruction of parameters

E(r) =
‖rpred − rex‖L2
‖rex‖L2

.

Figure 7 illustrates the predicting results for an example news story with the proposed model, where
the x-axis is the distance between users, while the y-axis represents the density of influenced users within
each distance. The solid width lines denote the actual observations for the density of influenced users for
a variety of timeperiods (i.e., 1-hour, 2-hours, 3-hours, 4-hours and5-hours),while thedashed lines illustrate
the predicted density of influenced users by the model for reconstructed parameters q. As we can see, the
proposed model is able to accurately predict the density of influenced users with different distance over time
(see the real measurements in [38]).

Table 2 gives the numerical values of parameter reconstruction during the numerical calculations with
their relative approximation errors E(q). The table shows that the Nelder–Mead method outperforms the
gradient based methods, which have converged to the closest local minimum to the tensor train’s solution.
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Figure 5: TT and gradient method of minimum errors: comparison of the solutions to direct problem (5.1)
(blue lines – exact parameters, black lines – reconstructed parameters from Table 2).

Figure 6: TT and AdaGrad: comparison of the solutions to direct problem (5.1)
(blue lines – exact parameters, black lines – reconstructed parameters from Table 2).

Figure 7: TT and Nelder–Mead: comparison of the solutions to direct problem (5.1)
(blue lines – exact parameters, black lines – reconstructed parameters from Table 2).
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TT method Gradient method AdaGrad method Nelder–Mead method

Symbol Exact value Value Relative error Value Relative error Value Relative error Value Relative error

d 0.01 0 1 0 1 0 1 0.01 6 ⋅ 10−3

Kcap 25 23.18 7.3 ⋅ 10−2 24.79 8.4 ⋅ 10−3 25 4.5 ⋅ 10−5 25 8.1 ⋅ 10−5

β1 1.5 1.12 2.5 ⋅ 10−1 1.137 2.42 ⋅ 10−1 1.125 2.5 ⋅ 10−1 1.45 3.3 ⋅ 10−2

β2 0.375 0.294 2.16 ⋅ 10−1 0.2888 2.3 ⋅ 10−1 0.28 2.5 ⋅ 10−1 0.362 3.4 ⋅ 10−2

β3 1.65 1.724 4.5 ⋅ 10−2 1.64 6 ⋅ 10−3 1.457 1.16 ⋅ 10−1 1.49 9.7 ⋅ 10−2

Table 2: The results of solving of inverse problem (5.1), (5.2) by TT, gradient type and Nelder–Mead methods.

Figure 8: Dependence of J(qn) on iteration number n (black line – gradient method of minimum errors, blue line – AdaGrad).

Despite the AdaGrad solution has larger relative error, themethod has reached this local solution point much
faster than the method of minimum errors (Figure 8).

6 Conclusion
The combined optimization algorithm for solving a multi-parameter inverse problem for the mathematical
model of a PDE of parabolic type arising in social networks, epidemiology and economy is investigated. The
inverse problem consists in identification of coefficients in a PDE and an initial condition of the initial bound-
ary value problem for the PDE using additional measurements of the solution of the direct problem in fixed
points of one-dimensional space and time. The considered inverse problem is ill-posed, i.e. the solution of
the inverse problem is non-unique and unstable. We reduce the inverse problem to the minimization of the
least-squares misfit function. There exists a wide class of optimization methods for a multi-parameter min-
imization problem. We choose the tensor train decomposition approach as a more appropriate method for
solving multidimensional minimization problems. The idea of the proposed method is to extract the tensor
structure of the optimized functional and use it for optimization. For a more accurate reconstruction, we
apply the methods of local optimization: gradient method of minimum errors, AdaGradmethod and Nelder–
Meadmethod. The formula of approximate gradient of the misfit function based on the solution of an adjoint
problem is derived.

For numerical experiments the inverse problem for the diffusive logistic mathematical model describing
online social networks is solved by combination of tensor train optimization and local methods. Suchmathe-
maticalmodel describe informationpropagation inDigg.com [38], Facebook andTwitter using the TALISMAN
database [2], etc. All calculations were implemented on Python on the Google Cloud Platform with a virtual
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machine with 15GB of RAM. It took about 18million of function evaluations for the tensor train method and
about 80 thousand of function evaluations for the gradient methods. However, taking into account that, in
the tensor train method, the functions are calculated in parallel, the calculations took much less machine
time than in the gradient method.

Nevertheless, we reached a good result by using the combined method; we could improve the quality of
parameter reconstruction with the tensor train method by using a more detailed grid (n = 1000). But in this
case, we need to use a more powerful computing machine.

Funding: This work is supported by the Russian Science Foundation (grant No. 18-71-10044).
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