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Abstract—We study the identifiability of some mathematical models of spreading TB and HIV
coinfections in a population and the dynamics of HIV-infection at the cellular level. Sensitivity
analysis is carried out using the orthogonal method and the eigenvalue method which are based
on studying the properties of the sensitivity matrix and show the effect of the model coefficient
change on simulation results. Practical identifiability is investigated which determines the possibility
of reconstructing coefficients from the noisy experimental data. The analysis is performed using the
correlation matrix and Monte Carlo method, while taking into consideration the Gaussian noise in
measurements. The results of numerical calculations are presented on whose basis we obtain the
identifiable sets of parameters.
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INTRODUCTION

Systems of ordinary differential equations (ODEs) are a powerful tool for simulating dynamic pro-
cesses in biology; e.g., immunology [1], epidemiology [2], pharmacokinetics [3-5], etc. The coefficients
of ODE systems characterize the properties of the model. Finding the coefficients provides information
about diseases, the immune status of a body, spreading of the epidemic, drug susceptibility, etc. These
coefficients can be estimated (and sometimes uniquely determined) using various additional information
about biological processes (solution of the Cauchy problem for ODEs) at fixed times. The problem
of determining the model parameters based on additional information about the solution of the direct
problem is called an inverse problem [6]. However, before solving the inverse problem it is necessary
to find the correctness conditions (existence, uniqueness, and/or stability of the solution). Identifiability
analysis allows us to find some correctness conditions for the inverse problem [7].

The history of development of identifiability of mathematical models goes back to the 80s of the
twentieth century, when the basic concepts and definitions were introduced [8–10]. Important first
results are presented in [11–13], where the identifiability conditions are obtained for nonlinear systems
of differential equations. In [14–16], the identifiability conditions for linear systems are obtained, and,
in [17], the problem of parametric identifiability is under study in the presence of disturbances in the
measurements. In [18], a new approach is developed for studying the global structural identifiability of
linear dynamic models, and, in [12, 19], some theorems related to the control of the system structure
are proved. In [20, 21], the properties and practical aspects of identification in the fields of metabolism,
pharmacokinetics, ecology, and chemical kinetics are considered. In [22, 23], verification of a priori
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global identifiability of some nonlinear models is carried out; and in [24, 25], a new separation algorithm
for identifiability analysis is developed. In [3, 4], an integrated approach is proposed to an advanced
methodology of mathematical models of physiology and medicine; in [5], a new approach to the analysis
of a priori identifiability of isolated systems is suggested; and in [26], analysis of structural identifiability
for the problems of cell biology is performed.

Analysis of identifiability can conventionally be divided into the three groups:

1. Structural (a priori) identifiability which analyzes the structure of the model and data and
does not take into account the quantity and quality of additional measurements of the inverse problem
(measurements are carried out under ideal conditions). Structural identifiability methods include the
methods of subordinate functions, differential algebra, Taylor series expansion, etc. [27, 28].

2. Sensitivity analysis which determines the degree of influence of the parameters and initial
conditions of the model on simulation results. The methods of sensitivity analysis require knowledge
of the initial parameters of the model, with respect to which the sensitivity is investigated, as well as
the location and number of measurements. Sensitivity methods include the eigenvalue method, the
orthogonal and correlation methods, etc. [7, 29].

3. Practical (a posteriori) identifiability depends on the quantity and quality of experimental data
(the error level in measurements is set). For the analysis of practical identifiability, Monte Carlo method,
the correlation matrix method, DAISY, etc. are used [30].

In this article, the mathematical models of the tuberculosis and HIV coinfection spreading in
a population (Section 3), and the dynamics of HIV infection at the cellular level (Section 4) are under
study in terms of their identifiability; these models are investigated by sensitivity analysis methods
(Section 1) and practical identifiability (Section 2). Some set of identifiable parameters is obtained for
each model.

1. SENSITIVITY ANALYSIS

Sensitivity analysis is used for evaluating the identifiability of unknown parameters q of a model in
the form of the ODE system

ẋ(t) = g(t, x(t), q), t ∈ (0, T ),
x(0) = x0,

h(t, x(t), q) = f(t),
(1)

where x(t) ∈ C1(RM ) is a vector of functions (M is the number of equations), q ∈ R
L is a vector of

parameters (L is the number of parameters), f(t) ∈ C(RP ) is a function of measurements (P � M is
the number of functions being measured), and t is time.

Sensitivity analysis methods do not require actual experimental data, although knowledge of the
number of measurements and the times when these measurements were taken, may be necessary
[29, 31]. To study a mathematical model using sensitivity analysis methods, we need to know the
parameter values that may be available from the literary sources or statistical information.

Sensitivity analysis methods are based on studying the sensitivity matrix. Assume that

t1 � t2 � · · · � tK

are the times when the vector function f(t) will be measured. Then the sensitivity matrix coefficients for
a given parameter vector q∗ are calculated by the formula

sij(t) =
∂fi(t, q∗)

∂qj
,

where fi is the ith component of the measurement vector f , i = 1, . . . , P , and qj is the jth component
of the parameter vector, j = 1, . . . , L.
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SENSITIVITY ANALYSIS AND PRACTICAL IDENTIFIABILITY 117

Thus, the sensitivity matrix is defined as

SP ·K×L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11(t1) . . . s1L(t1)
...

. . .
...

sP1(t1) . . . sPL(t1)

. . . . . . . . . . . . . . . . . . . . . . .

s11(tK) . . . s1L(tK)
...

. . .
...

sP1(tK) . . . sPL(tK)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

To calculate the sensitivity matrix, we consider the traditional sensitivity function

sqj(t) =
∂x

∂qj
(t), j = 1, . . . , L.

By differentiating the first equation of system (1) with respect to qj , we obtain that each vector function
sqj , j = 1, . . . , L, satisfies the Cauchy problem

ṡqj(t) =
∂g

∂x
(t, x(t; q), q)sqj (t) +

∂g

∂qj
(t, x(t; q), q),

sqj(t0) = 0.
(3)

Solving (3), we obtain sqj(t). Then, differentiating the third equation of (1) with respect to qj , we find
that the sensitivity matrix coefficients are calculated as

sij =
∂hi

∂x
sqj +

∂hi

∂qj
, i = 1, . . . , P, j = 1, . . . , L.

Next, we will consider the orthogonal method and the eigenvalue method of analysis of the properties
of the sensitivity matrix S.

1.1. Orthogonal Method

The main idea of the orthogonal method proposed in [32] is to investigate the linear dependences
of the columns of the sensitivity matrix S defined by (2). Thus, we can simultaneously evaluate both
the sensitivity of the parameters to the input data and the relationship between the parameters. In the
literature, there are several variants of determining the linearly dependent columns of a matrix, two of
which we consider as the main approaches and describe as two algorithms; other variants are variations
of the basics.

Algorithm 1 of the Orthogonal Method [33].

Step 1. We define a stopping criterion δ1, an array I = ∅ of the numbers of the identifiable parameters,
and an array U = {1, . . . , L} of the numbers of nonidentifiable parameters U = {1, . . . , L}. We construct
the sensitivity matrix S of the form (2).

Step 2. Select the column l with the largest sum of squares of elements, add l to the matrix E as the
first column, and delete l from S. The element l is added to the array I and removed from U .

Step 3. If U is empty then we stop the algorithm: for this model, all parameters are identifiable.
Otherwise, go to Step 4.

Step 4. For each column Sh, h = 1, . . . , n, of the matrix S, where n is the number of remaining
columns from S, we calculate the perpendiculars:

S⊥
h = Sh − Sproj

h , Sproj
h =

L−n∑
k=1

(Sh, Ek)
(Ek, Ek)

Ek, E = (E1, ..., EL−n), h = 1, . . . , n.
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Step 5. From the resulting matrix S⊥ of perpendiculars, we select a column l with the largest sum
of squares of elements. If

∥∥S⊥
l

∥∥ � δ1 then we halt the algorithm. All parameters from I are identifiable;
otherwise, go to Step 6.

Step 6. Add the element l to I, delete it from U , add the corresponding column to E and remove it
from S. Proceed to Step 3.

In [32], the process of selecting identifiable parameters is halted as soon as the maximum value is
below the cutoff value δ1 ≈ 0, the choice of which is rather arbitrary. For instance, in [34] it is δ1 = 10−4.
In the present study, we do not apply a stopping criteria, but evaluate all parameters from the most
identifiable to the least identifiable ones, and analyze the value of δ1 in general.

Algorithm 2 of the Orthogonal Method [32].

Step 1. For each column of the sensitivity matrix S, we calculate the sum of squares of the entries.
Step 2. As the first parameter to be evaluated, we select the parameter corresponding to the column

of the matrix S with the largest sum of squares of the entries.

Step 3. A column with the largest sum of squares of the entries is denoted by XL (L = 1 for the first
iteration).

Step 4. Calculate ŜL = XL

(
X�

L XL

)−1
X�

L S.

Step 5. Calculate the residual matrix RL: RL = S − ŜL.

Step 6. For each column of the residual matrix RL, calculate the sum of squares of the entries. The
column with the largest sum corresponds to the next estimated parameter.

Step 7. Select the corresponding column in S and enlarge the matrix XL by adding a new column.
Denote the enlarged matrix by XL+1.

Step 8. Set L = L + 1 and repeat Steps 4–7 until the column with the largest value of the sum of
squares of the entries in the residual matrix becomes less than the specified cutoff value.

1.2. Method of Eigenvalues
The method of eigenvalues, proposed in [11], bases on the properties of the eigenvalues and eigen-

vectors of the matrix:

Hml =
∑
i,k

∂fi(tk, q∗)
∂ql

∂fi(tk, q∗)
∂qm

= (ST S)ml, (4)

where S is the sensitivity matrix defined by (2) and q∗ is a given vector of parameters.

Algorithm of the Method of Eigenvalues
Step 1. We set a stopping criterion δ2, an array of identifiable parameters I = 1, . . . , L, and an array

of non-identifiable parameters U = ∅. Then we construct the sensitivity matrix S of the form (2).

Step 2. If I is empty then we halt the algorithm. For this model, all parameters are non-identifiable.
Otherwise, go to Step 3.

Step 3. We calculate the matrix H by formula (4). For H we find the eigenvalues λl:

λ1 � λl � · · · � λL

and eigenvectors ul.

Step 4. If λ1 ≥ δ2 then we halt the algorithm. The parameters that are in I are identifiable. Otherwise,
go to Step 5.

Step 5. Choose l:
∣∣u1

l

∣∣ = max
(∣∣u1

1

∣∣, ∣∣u1
2

∣∣, . . . , ∣∣u1
L

∣∣) (the maximal element in the eigenvector with
the minimal eigenvalue). Add l to the set of nonidentifiable parameters U , delete from I, delete the
corresponding column from the matrix S, and go to Step 2.

As in the previous method, we evaluate all parameters without selecting a cutoff value for δ2 ≈ 0,
from the most identifiable to the least identifiable ones.
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2. PRACTICAL IDENTIFIABILITY

Analysis of practical identifiability allows us to evaluate the model parameters with acceptable
accuracy on the basis of some noisy experimental data. The result of application of the practical
identifiability methods for the analysis of mathematical models depends on the quality and quantity of
experimental data. Suppose that the measurements are given with some error

f(t) = h(t, x(t), q) + ε(t), (5)

where ε(t) is a normally distributed error with zero mean and variance σ2(t).

Next, we consider methods of practical identifiability: the Monte Carlo method and the correlation
matrix method.

2.1. Correlation Matrix Method

In [35], an approach is proposed to study the correlations between the model parameters. The method
calculates a matrix whose elements show a correlation between the two parameters. If this correlation is
close to 1 then these two parameters depend on each other and are indistinguishable in the model; i.e.,
they cannot be evaluated separately.

Algorithm of the Correlation Matrix Method

Step 1. Set the exact values of the parameters q0 that may be available from statistical information or
the literature.

Step 2. Construct the sensitivity matrix S by formula (2).

Step 3. Let us construct the Fisher matrix by the formula

F =
K∑

k=1

(
∂f(tk, q0)

∂q

)�
V −1

(
∂f(tk, q0)

∂q

)
= S�V −1S,

where K is the number of measurements, V is a known positive definite matrix of weights.

Step 4. Calculate the matrix C = F−1.

Step 5. Calculate the correlation coefficients Rij by the formula

Rij =

{
cij/

√
ciicjj, i �= j,

1, i = j,

where cij are the entries of C.

Step 6. Construct the correlation matrix

R =

⎛
⎜⎜⎜⎝

R11(q1, q1) . . . R1L(q1, qL)
...

. . .
...

RL1(qL, q1) . . . RLL(qL, qL)

⎞
⎟⎟⎟⎠ .

The correlation matrix method allows us to check the distinguishability of every pair of parameters.
We should also note that the method identifies an indistinguishable pair and does not indicate the
parameter that is more unidentifiable.
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2.2. Monte Carlo Method
The Monte Carlo method [36] is a sampling method that uses random numbers and probability

distributions. The method allows us to simulate various scenarios with different number of observations
at different noise levels or measurement errors for different experimental designs when such projects may
turn out to be impossible for practical experiments.

Algorithm of the Monte Carlo Method
Step 1. Set the exact values of the parameters q0 which may be available from statistical information

or the literature.
Step 2. Solve the direct problem

ẋ(t) = g(t, x(t), q), t ∈ (0, T ),
x(0) = x0,

and obtain the measurements f(tk) of the form (5) at fixed times tk.
Step 3. Generate N sets (for example, N = 100) of the measurement data f with some given noise

level ε.
Step 4. Solve the inverse problem for each of the N simulated datasets to find the parameter vector

qi, i = 1, . . . , N .
Step 5. Calculate the average relative error of estimation (ARE) for each element of the vector q by

the formula

AREl =
1
N

N∑
i=1

|q0
l − qi

l |
|q0

l |
· 100%, l = 1, . . . , L, (6)

where q0
l is the lth parameter of vector q0, while qi

l , of qi.

For a rather small measurement error, the parameters should be close to the true values and ARE
should be close to zero. When the measurement error increases, the ARE value will also increase.
If the ARE value is unacceptably high for some parameter, it can be argued that this parameter is
not identifiable. Moreover, there is no clear rule on how high the ARE value should be before declaring
a parameter unidentifiable for a specific problem.

We apply the above methods of analysis of sensitivity and practical identifiability to the mathematical
models arising in epidemiology and immunology.

3. MATHEMATICAL MODEL OF SPREADING THE COINFECTION
OF TUBERCULOSIS AND HIV

Consider the mathematical model of spreading the coinfection of tuberculosis (TB) and HIV devel-
oped by a group of American researchers [2]:

dS

dt
= Λ − βcS

I + J3

N
− λσS

J∗

R
− μS,

dL

dt
= βc(S + T )

I + J3

N
− λσL

J∗

R
− (μ + k + r1)L,

dI

dt
= kL − (μ + d + r2)I,

dT

dt
= r1L + r2I − βcT

I + J3

N
− λσT

J∗

R
− μT,

dJ1

dt
= −βcJ1

I + J3

N
+ λσ(S + T )

J∗

R
− (α1 + μ)J1,

dJ2

dt
= βcJ1

I + J3

N
+ λσL

J∗

R
− (α2 + μ + k∗)J2 + r∗J3, t ∈ (0, T ),

dJ3

dt
= k∗J2 − (α3 + μ + d∗ + r∗)J3,

dA

dt
= α1J1 + α2J2 + α3J3 − (μ + f)A,

(7)
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S(0) = S0, L(0) = L0, I(0) = I0, T (0) = T0,

J1(0) = J10 , J2(0) = J20 , J3(0) = J30 , A(0) = A0.

Here
S(t) is the number of uninfected individuals,
L(t) is the number of individuals latently infected with TB (without HIV),
I(t) is the number of individuals with active TB (without HIV),
T (t) is the number of individuals cured of TB (without HIV),
J1(t) is the number of individuals infected with HIV (without TB),
J2(t) is the number of individuals infected with HIV and latently infected with TB,
J3(t) is the number of individuals infected with HIV and active TB,
A(t) is the number of individuals with AIDS;
N = S + L + I + T + J1 + J2 + J3 + A is the entire population,
R = S + L + T + J1 + J2 is the “active” population,
J∗ = J1 + J2 + J3 are the persons infected with HIV.
The values of the parameters

Λ, βc, λσ, μ, k, k∗, d, d∗, f, r1, r2, r∗, α1, α2, α3, N

are represented in Table 1. The following vector is selected as the initial data:

S(0) = 430, L(0) = 3854.5, I(0) = 16.875, T (0) = 3.412,

J1(0) = 3.2757, J2(0) = 27.7, J3(0) = 1.4, A(0) = 0.357.

Suppose that additional information about the three functions of the system (7) is set

I(tk; q) = Ik(q), J3(tk; q) = Jk
3 (q), A(tk; q) = Ak(q), k = 1, . . . ,K. (8)

Consider the uniform grid on the segment (0, T ), T = 5 years, with a partition of N = 5000 points;
K = 5 measurements are performed once a year.

We will analyze the sensitivity of all 16 parameters of mathematical model (7)

Λ, βc, λσ, μ, k, k∗, d, d∗, f, r1, r2, r∗, α1, α2, α3, N

using the orthogonal method and the eigenvalue method (the results are presented in Table 2 and Fig. 1).
Table 2 presents the collections of parameters sensitive to measurement errors arranged in the order

of increasing sensitivity, which were obtained using the sensitivity analysis methods. Note that a slight
mismatch between the sequences of sensitive parameters obtained by different methods of sensitivity
analysis, is connected with rather close values of the estimating norms of the perpendiculars of the
sensitivity matrix and of the smallest eigenvalues of the matrix H of (4) (see Fig. 1). In Fig. 1 we denote:
A1 is the collection of all 16 parameters of the system,

A2 = A1 \ {Λ}, A3 = A2 \ {N}, A4 = A3 \ {r∗}, A5 = A4 \ {βc},

A6 = A5 \ {α1}, A7 = A6 \ {λσ}, A8 = A7 \ {f}, A9 = A8 \ {μ},

A10 = A9 \ {k}, A11 = A10 \ {k∗}, A12 = A11 \ {d}, A13 = A12 \ {d∗},

A14 = A13 \ {r1}, A15 = A14 \ {r2}, A16 = A15 \ {λ2}.

However, most of the parameters of mathematical model (7) can be determined quite accurately from
statistical information and do not need to be clarified. Therefore, it is expedient to carry out the further
analysis of identifiability for the shorter vector of parameters

q = (k, k∗, r2, α1, α2, α3) ∈ R
6.
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Table 1. Parameters for mathematical model (7)

Parameters Values Units of Description
measurement

Λ 43 1/year Birth rate

βc 0.025 — Probability
of contracting tuberculosis through contact

with a person with active tuberculosis

λσ 0.0004 — Probability
of contracting HIV through contact

with an HIV-infected person

μ 0.0143 1/year Natural mortality per capita

k 0.05 year TB progression rate per capita
for people not infected with HIV

k∗ 0.25 year TB progression rate per capita
for people also infected with HIV

d 0.1 1/year Tuberculosis mortality per capita

d∗ 0.2 1/year HIV mortality rate per capita

f 0.5 1/year AIDS mortality rate per capita

r1 3 1/year Recovery indicator for latent tuberculosis
per capita for people without HIV

r2 1 1/year Recovery indicator for active tuberculosis
per capita for people without HIV

r∗ 3 1/year Recovery indicator for latent tuberculosis
per capita for people with HIV

α1 0.1 year Per capita AIDS progression rate
for individuals from J1

α2 0.2 year Per capita AIDS progression rate
for individuals from J2

α3 0.2 year Per capita AIDS progression rate
for individuals from J3

N 4315.76 Number The entire population
of individuals

Table 2. Collections of all coefficients of model (7) that are
sensitive to measurement errors (8)

Orthogonal method Eigenvalue method

k, μ, α2, d, r2, r1, f , λσ, α3, α2, r2, r1, d∗, d, k∗, k,

α1, k∗, α3, d∗, βc, r∗, Λ, N μ, f , λσ, α1, βc, r∗, N , Λ
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Fig. 1. The values of the norms of perpendiculars in a logarithmic scale for the orthogonal method (left) and the
values of the minimal eigenvalues of matrix (4) in a logarithmic scale for the eigenvalue method (right) in the case
of mathematical model (7).

Using the sensitivity analysis methods, we also obtained the collections of parameters that are
sensitive to measurement errors. We arranged them in the order of increasing sensitivity that was
obtained by sensitivity analysis (see Table 3).

The threshold values of the sensitive parameters δ1 and δ2 are set as follows: δ1 = 10−3 for the
orthogonal method, and δ2 = 10−3 for the eigenvalue method.

Let us note the qualitative coincidence of the sequences of the sought parameters for various
algorithms and methods. Fig. 2 presents the graphical illustration of the results:

The left and central graphs show the values of the norms of perpendiculars of the sensitivity matrix
for the orthogonal method (Algorithms 1 and 2). Each column of these graphs represents the largest
norm of a column of the matrix of perpendiculars to the sensitivity matrix, obtained at each iteration of
the algorithm. The parameter corresponding to the column with the largest norm of perpendiculars is
the least sensitive to measurement errors.

The right graph in Fig. 2 shows the values of the minimum eigenvalues of matrix (4) in the case of the
eigenvalue method. At each iteration of the algorithm, based on the analysis of the minimal eigenvalue
of matrix (4), the most sensitive parameter is determined. At the next iteration, the most sensitive
parameter is excluded from consideration, and matrix (4) is rearranged for a new set of parameters. Under
each column of the right graph in Fig. 2 a collection of parameters is presented which is considered at
each iteration of the algorithm:

D1 = {α3, α1, k
∗, α2, r2, k}, D2 = {α1, k

∗, α2, r2, k},

D3 = {k∗, α2, r2, k}, D4 = {α2, r2, k}, D5 = {r2, k}.

For the correlation matrix method, we assume that σ2 = 1/60 and measurements are taken with an
error of 5 %. Then for K = 2 (the measurements are taken the first two years) we observe the correlation
matrix of the form (9) and for K = 5 (measurements are taken every year), of the form (10):

Table 3. Collections of coefficients of the model (7) that are sensitive
to measurement errors (8)

Orthogonal method Eigenvalue method

Algorithm 1 Algorithm 2

k, α2, r2, k∗, α1, α3 k, α2, r2, k
∗, α1, α3 k, r2, α2, k∗, α1, α3
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Fig. 2. The values of norms of perpendiculars in the logarithmic scale for the orthogonal method in the case of
Algorithm 1 (left), in the case of Algorithm 2 (at the center), and the values of the minimal eigenvalues of matrix (4)
in the logarithmic scale for the eigenvalue method (right) in the case of mathematical model (7).

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k k∗ r2 α1 α2 α3

k 1 −6.7 × 10−5 0.945 6.4 · 10−5 6.7 · 10−5 −7.1 · 10−5

k∗ −6.7 · 10−5 1 2.6 · 10−5 −0.835 −0.975 0.998
r2 0.945 2.6 · 10−5 1 −2.2 · 10−5 −1.7 · 10−5 1.9 · 10−5

α1 6.4 · 10−5 −0.835 −2.2 · 10−5 1 0.696 −0.814
α2 6.7 · 10−5 −0.975 −1.7 · 10−5 0.696 1 −0.984
α3 −7.1 · 10−5 0.998 1.9 · 10−5 −0.814 −0.984 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

R5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k k∗ r2 α1 α2 α3

k 1 −4.2 · 10−5 0.920 4.9 · 10−5 5.1 · 10−5 −5.3 · 10−5

k∗ −4.2 · 10−5 1 1.9 · 10−5 −0, 752 −0.994 0.997
r2 0.920 1.9 · 10−5 1 4.4 · 10−6 −3.1 · 10−6 1.6 · 10−6

α1 4.9 · 10−5 −0.752 4.4 · 10−6 1 0.696 −0.739
α2 5.1 · 10−5 −0.994 −3.1 · 10−6 0.696 1 −0.998
α3 −5.3 · 10−5 0.997 1.6 · 10−6 −0.739 −0.998 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Note that the correlation coefficients for the parameters (k, r2) equal

R2
13(k, r2) = 0.945, R5

13(k, r2) = 0.920,

while for (k∗, α3) we have

R2
26(k

∗, α3) = 0.998, R5
26(k

∗, α3) = 0.997

that are close to 1. It means that these parameters depend on each other and are indistinguishable
for model (7). All other coefficients have rather low correlation. Consequently, to further determine
the parameters of this model, it is desirable to fix the most sensitive parameters from the pairs (k, r2)
and (k∗, α3). As shown by the sensitivity methods, the parameter r2 is more sensitive to measurement
errors than k, whereas α3 is more sensitive than k∗. Therefore, it is recommended to fix the parameters
r2 and α3 and determine the remaining four parameters.
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Table 4. Collections of all coefficients of model (11) obtained by the methods
of sensitivity analysis

Orthogonal method Eigenvalue method

NT , λ1, c, k1, d1, δ, ρ1, k2, λ2, ρ2, λ1, d1, m1, δ, k2, λ2, k1, Kd, λE , ρ2,

δE , bE, dE , λE , m1, d2, Kb, Kd, m2 ρ1, d2, c, dE , NT , Kb, m2, bE , δE

4. MATHEMATICAL MODEL OF THE DYNAMICS OF HIV INFECTION

Consider a mathematical model of the dynamics of HIV infection at the cellular level, which was
developed by a group of American researchers (see [1]):

dT1

dt
= λ1 − d1T1 − k1V T1,

dT2

dt
= λ2 − d2T2 − k2V T2,

dT ∗
1

dt
= k1V T1 − δT ∗

1 − m1ET ∗
1 ,

dT ∗
2

dt
= k2V T2 − δT ∗

2 − m2ET ∗
2 , t ∈ (0, T ),

dV

dt
= NT δ

(
T ∗

1 + T ∗
2

)
− cV − [ρ1k1T1 + ρ2k2T2]V,

dE

dt
= λE +

bE(T ∗
1 + T ∗

2 )
(T ∗

1 + T ∗
2 ) + Kb

E − dE(T ∗
1 + T ∗

2 )
(T ∗

1 + T ∗
2 ) + Kd

E − δEE,

(11)

T1(0) = T10 , T2(0) = T20 , T ∗
1 (0) = T ∗

10
,

T ∗
2 (0) = T ∗

20
, V (0) = V0, E(0) = E0.

Here t > 0, T ∗
1 (t) and T1(t) are concentration of the infected and uninfected CD4 + T lymphocytes,

T ∗
2 (t) and T2(t) are concentration of the infected and uninfected macrophages, respectively, V (t) is the

concentration of free viruses, and E(t) is the concentration of CD8 + T-lymphocytes of effectors. The
values of system parameters and initial data for mathematical model (11) are given in [38].

Suppose that the following additional information is available about system (11):

T1(tk; q) + T ∗
1 (tk; q) = T k

1 (q) + T ∗k
1 (q),

V (tk; q) = V k(q), E(tk; q) = Ek(q), k = 1, . . . ,K.
(12)

Consider the uniform grid on the segment (0, T ), T = 100 days, with a partition by N = 104 points;
and assume that K = 15 measurements are taken uniformly.

Let us analyze the sensitivity of all 19 parameters

λ1, λ2, d1, d2, k1, k2, δ, m1, m2, NT , c, ρ1, ρ2, λE , bE, dE , Kb, Kd, δE

of mathematical model (11). The results of analysis of the sensitivity of parameters arranged in the order
of increasing sensitivity to measurements (12) are presented in Table 4 and Fig. 3.

For model (11), the results vary in dependence on the method. This is connected with the fact that
most of the values of the estimating norms of perpendiculars of the sensitivity matrix and minimal
eigenvalues are of the same scale (see Fig. 3), which implies the equality of occurrence of parameters in
the sequence (a similar degree of sensitivity to the measurement errors).

In Fig. 3: A1 is a collection of all 19 parameters, whereas

A2 = A1 \ {δE}, A3 = A2 \ {bE}, A4 = A3 \ {m2}, A5 = A4 \ {Kb},
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Fig. 3. The values of norms of perpendiculars in the logarithmic scale for the orthogonal method (left) and the values
of the minimal eigenvalues of matrix (4) in the logarithmic scale for the eigenvalue method (right) in the case of
mathematical model (11).

Fig. 4. The values of norms of perpendiculars in the logarithmic scale for the orthogonal method in the case of
Algorithm 1 (left), in the case of Algorithm 2 (at the center), and the values of the minimal eigenvalues of matrix (4)
in the logarithmic scale for the eigenvalue method (right) in the case of mathematical model (11).

A6 = A5 \ {NT }, A7 = A6 \ {dE}, A8 = A7 \ {c}, A9 = A8 \ {d2},

A10 = A9 \ {ρ1}, A11 = A10 \ {ρ2}, A12 = A11 \ {λE}, A13 = A12 \ {Kd},

A14 = A13 \ {k1}, A15 = A14 \ {λ2}, A16 = A15 \ {k2},

A17 = A16 \ {δ}, A18 = A17 \ {m1}, A19 = A18 \ {d1}.

Most parameters of mathematical model (11) can be found fairly accurately from the medical data
and do not need to be clarified, and only four of them, namely λ1, λ2, k1, and k2, must be determined for
each patient individually [39]. Therefore, further identifiability analysis is carried out for the significant
parameter vector

q = (λ1, λ2, k1, k2) ∈ R
4.

Applying the sensitivity analysis methods, we obtain the identical sets of parameters sensitive to the
measurement errors and arrange them in the order of increasing sensitivity, which are presented in Fig. 4.

Note that all parameters of q are not very sensitive to the measurement errors (12) since δ1 = δ2 =
103. Thus, the solution q of the inverse problem (11), (12) will be stable to the data errors.

For the correlation matrix method we put σ2 = 1/30, and assume that the measurements are given
with error of 10 %. In this case, the correlation matrices are as follows:
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Table 5. The values of the relative error of the form (6)
obtained by Monte Carlo method for mathematical model
(11)

Number of Noise Relative error

measurements level λ1 λ2 k1 k2

5 % 8.54 44.12 10.18 47.61

K = 8 10 % 4.41 45.94 12.82 47.61

15 % 15.65 45.96 7.66 49.01

5 % 2.69 41.72 6.44 48.94

K = 15 10 % 3.54 44.79 4.32 48.14

15 % 9.62 42.76 13.11 48.64

for K = 4:

R4 =

⎛
⎜⎝

λ1 λ2 k1 k2

λ1 1 0.194 4.4 · 10−3 −0.648
λ2 0.194 1 −0.859 −0.753
k1 4.4 · 10−3 −0.859 1 0.415
k2 −0.648 −0.753 0.415 1

⎞
⎟⎠; (13)

for K = 8:

R8 =

⎛
⎜⎝

λ1 λ2 k1 k2

λ1 1 0.447 −0.671 −0.526
λ2 0.447 1 −0.473 −0.796
k1 −0.671 −0.473 1 0.227
k2 −0.526 −0.796 0.227 1

⎞
⎟⎠; (14)

for K = 15:

R15 =

⎛
⎜⎝

λ1 λ2 k1 k2

λ1 1 −0.267 −0.495 0.358
λ2 −0.267 1 −0.368 0.154
k1 −0.495 −0.368 1 −0.710
k2 0.358 0.154 −0.710 1

⎞
⎟⎠. (15)

Note that, in the cases of K = 4, K = 8, and K = 15, the correlation coefficients between the
parameters are rather small. It means that the parameters are independent of each other and can be
evaluated individually.

The results of applying the Monte Carlo method are given in Table 5 for different numbers of
measurements and noise levels.

To solve the inverse problem (item 4 of the Monte Carlo method algorithm) for the mathematical
model (11), a genetic algorithm was used [38]. At each iteration, the direct problem of the genetic
algorithm was solved using the Runge–Kutta method of the fourth approximation order.

Monte Carlo method showed that the most unidentifiable parameters are k2 and λ2 since the values
of the relative errors ARE obtained by (6), are sufficiently high. In [40], some confidence intervals for the
considered parameters are constructed. It is shown that the confidence interval size for λ1 is the smallest
and equal to 0.002827, the confidence interval for λ2 is the largest and equal to 0.244993; it is 0.024657
for k1, and 0.084515 for k2. The smaller the confidence interval for the parameters, the better it can be
reconstructed.

Consequently [1], the parameter λ1 is restored with the minimum relative error, whereas the λ2 is
determined worse than the others. These calculations are consistent with the results in Table 5.
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Fig. 5. Three-dimensional graph of the functional J(λ2, k2) in the logarithmic
scale with fixed parameters λ1 and k1.

Fig. 6. The projection of the three-dimensional graph of the functional J(λ2, k2) in the logarithmic scale on
the plane (lg(J(λ2, k2)), λ2) with fixed parameters λ1 and k1 (left); projection of the three-dimensional graph
of J(λ2, k2) in the logarithmic scale on the plane (lg(J(λ2, k2)), k2) with fixed λ1 and k1 (right).

Note that for some parameters in Table 5, the relative error in estimating the average decreases with
increasing variance of the approximated data. This is due to the presence of several local minima of the
objective functional (see Figs. 5 and 6).

CONCLUSION

Research of identifiability of mathematical models was conducted for the systems of ordinary
differential equations describing spreading the epidemic of the tuberculosis and HIV coinfection and
the dynamics of HIV infection at the cellular level, using methods of sensitivity analysis and practical
identifiability.

Identifiability analysis is an important step in the study of inverse problems which is necessary when
developing regularizing algorithms for solving them.

The proposed methods for identifiability research allow finding nonidentifiable parameters, evaluating
the required number of measurements of the inverse problem data for the existence of solutions, as well
as identifying the model parameters that are most sensitive to the measurement errors.
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